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Microbiota disruption leads to reduced cold tolerance in Drosophila
flies
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Abstract
It is now acknowledged that bacteria from gut microbiota deeply interact with their host by altering many physiological traits.
Such interplay is likely to consequently affect stress tolerance. Here, we compared cold and heat tolerance of Drosophila
melanogaster flies with undisrupted (control (Co)) versus disrupted gut microbiota (dechorionated eggs (De)). The disrupting
treatment strongly reduced bacterial load in flies’ guts, though 16S sequencing analysis did not evidence strong diversity changes
in the remaining bacterial community. Both chill coma recovery and acute cold survival were repeatedly lower in De than in Co
flies under our experimental conditions. However, heat tolerance was not consistently affected by gut disruption. Our results
suggest that microbiota-related effects on the host can alter ecologically relevant traits such as thermal tolerance.

Keywords Gutmicrobiota . Fruit flies . Thermal stress . Chill coma

Introduction

Over the last two decades, studies have linked variation in
microbiota composition to variation in numerous host charac-
teristics, including immune response, metabolism, morpholo-
gy, fitness, and development (Brummel et al. 2004; Ryu et al.
2008; Shin et al. 2011; Wong et al. 2014). Most of these
microbiota-mediated changes are caused by the production
of primary or secondary metabolites or by the presence of
bacteria per se (Matos et al. 2017). All these molecular signals
can up- or downregulate multiple cellular pathways of the host
and alter its whole physiology. Despite their functional impor-
tance, commensal gut bacteria communities vary considerably
with time and environmental parameters (Engel and Moran
2013; Wong et al. 2013). For instance, in Drosophila
melanogaster, bacterial load and diversity are strongly altered

by nutrition (Staubach et al. 2013) or aging (Clark et al. 2015).
Impoverished microbiota may lead to dysbiosis and reduce
benefits provided by microorganisms (e.g., amino acids, vita-
mins, and other metabolites) (Ridley et al. 2012; Yamada et al.
2015). Thus, microbiota appears as a highly labile component
of the holobiont, which could be the source of ecologically
relevant phenotypic variations that are not under the control of
the host’s genome.

Given the range of beneficial functions provided by micro-
biota, it may also shape the ability of hosts to tolerate stressful
situations (Soen 2014). In particular, coping with temperature
variations is critically important for ectotherms. Alteration of
energy reserves, metabolism, or gene expression by microbi-
ota may indirectly affect thermal tolerance, which strongly
depends on these traits (Teets and Denlinger 2013). In
humans, the presence of gut bacteria such as Lactobacillus
sp. is correlated with the production of heat shock proteins, a
family of chaperone molecules able to repair cellular damages
generated by thermal stress (Liu et al. 2014). In insects, some
studies investigated microbiota effects on thermotolerance.
For instance, intracellular heritable symbionts such as
Hamiltonella and Serratia can promote the fitness of their
thermally stressed aphid hosts (Russell and Moran 2006).
Recent data suggest developmental temperature strongly af-
fects microbial composition of D. melanogaster (Moghadam
et al. 2017). However, whether gut microbiota have a role to
play in thermotolerance remains unclear.
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Here, we hypothesized that D. melanogaster harboring a
disrupted gut microbiota would be more susceptible to stress-
ful temperatures (cold and heat), compared to flies with intact
microbiota. To test this assumption, we disrupted flies’micro-
biota, evaluated the outcome of this treatment with colony
counting and 16S sequencing methods, and then assessed
thermotolerance using replicated experiments.

Material and methods

Fly culture

We conducted the experiments on an outbredD.melanogaster
population derived from wild individuals collected in 2015 in
Brittany (France). This lineage did containWolbachia symbi-
onts. We routinely maintained fly stocks at 25 °C (12L:12D),
on standard yeast-sugar-agar fly medium (16% yeast, 5% sug-
ar, 8 mL L−1 Nipagin). Before experiments, one generation
was reared on decaying organic fruits to maximize bacterial
diversity.

Generation of dysbiotic flies

We performed the experiments over two independent repli-
cates. Adults were collected and allowed to lay eggs for 6–
12 h on agar plates. Eggs were collected with a paint brush and
transferred to one of the two following treatments for
development:

Dechorionation (De): eggs were successively immersed in
2.7% hypochlorite for 2 min, 70% ethanol for 2 min, and
rinsed twice in autoclaved water (Koyle et al. 2016).
Dechorionated eggs were then aseptically transferred into
autoclaved food vials under a sterile laminar flow (N = 30,
approx. 50 eggs per vial). At emergence and every other day
thereafter, adults were transferred to new autoclaved food
vials.

Control (Co): eggs were transferred after water wash in
vials (N = 30, approx. 50 eggs per vial) containing autoclaved
food recontaminated with 50 μL of homogenized flies.
Recontamination was assumed to guarantee bacterial coloni-
zation of autoclaved sterile food. Emerging adults were then
maintained as above.

In all experiments, we used 4–6-day-old females that were
visually sexed without CO2 to avoid stress (Colinet and
Renault 2012). Additional details on the experimental proto-
col are presented in ESM and Fig. S1.

Thermal tolerance

For chill coma recovery (CCR), we exposed 50 females to
0 °C for 12 h in an incubator (MIR-154, Sanyo, Japan), and
time to recover at 25 °Cwas individually monitored. For acute

cold stress, flies placed in glass vials were immersed into a
water-glycol bath set at − 3.5 ± 0.1 °C for cold stress and 38.5
± 0.1 °C for heat stress. Exposure lasted for maximum
120 min, and every 15 min starting from t = 0 min, 20–30
individuals were removed from the bath, resulting in nine
exposure durations. We scored survival after 24 h at 25 °C.

Microbiota quantification and sequencing

We used plating to evaluate bacterial load in flies, following a
standard protocol (Koyle et al. 2016).

We performed IlluminaMiSeq sequencing of microbiota in
three randomly picked biological replicates ofDe andCo flies,
from whole body DNA extracts. Individuals were surface-
sterilized with hypochlorite and ethanol to avoid the extraction
of external bacteria. Sequencing was only performed in the
second replicated experiment.

Complete experimental procedures are described in ESM.

Statistical analyses

CCR were analyzed with log-rank method using Prism soft-
ware (Graphpad, La Jolla, USA). Other analyses were per-
formed using R (R Core Team 2017). Binomial generalized
linear models (GLMs) with a logit link function followed by
Tukey tests were used for acute stress survival. Differences in
bacterial load were tested with t tests. Clustering OTU at ge-
nus level and computation of alpha and beta diversity was
performed using Bphyloseq^ package (McMurdie and
Holmes 2013).

Data availability The datasets generated during the current
study are available in the Figshare repository https://figshare.
com/projects/Data_accessibility_Microbiota_disruption_
leads_to_reduced_cold_tolerance_in_Drosophila_flies_/
28995.

Results

Plating of flies’ gut bacteria confirmed an effective bacterial
load reduction by dechorionation treatment (t = 4.15, df = 17,
p < 0.001; Fig. 1a). MiSeq sequencing generated 39,000 to
50,000 reads per sample. After removal of Wolbachia reads,
De flies still presented reads corresponding to common OTU
in fruit flies. The number of reads in these De flies was how-
ever drastically reduced (Fig. 1b), suggesting again a quanti-
tative reduction of gut bacteria by the treatment. Bacterial
community information obtained by 16S sequencing revealed
a large dominance of Acetobacteraceae order in Co flies,
which was less clear in De flies (Fig. 1b). We found a low
representation of Commensalibacter in De flies, while this
genus was largely represented in Co. Yet, we could not detect
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any significant microbiota structure or diversity alteration
caused by the treatment (Co vs. De: Shannon alpha diversity
comparison, F = 0.25, df = 1, p = 0.643; Bray-Curtis beta di-
versity comparison, F = 3.08, df = 1, p = 0.1).

Cold tolerance was significantly lower in De compared to
Co flies. CCR was longer in De than in Co flies, in both
replicated experiments (X2 = 12.78, df = 1, p < 0.001; X2 =
14.55, df = 1, p < 0.001; in Fig. 2(A, D) respectively).
Survival rate after cold exposure was also negatively impacted
by dechorionation (X2 = 28.68, df = 1, p < 0.001; X2 = 35.71,
df = 1, p < 0.001; in Fig. 2(B, E) respectively). However, we
did not observe a consistent effect of microbiota disruption on
acute heat stress survival. The treatment significantly reduced
heat tolerance in the first, but not in the second replicate (X2 =
8.18, df = 1, p = 0.004; X2 = 1.23, df = 1, p = 0.27; in Fig. 2(C,
F) respectively). Overall, the amplitude of heat tolerance var-
iation between Co and De was small compared to that ob-
served for cold tolerance assay.

Discussion

Our results support the hypothesis that microbiota disruption
can alter the ability to cope with thermal stress. The drastic
reduction of bacterial load in dechorionated flies was associ-
ated with delayed recovery after mild cold stress and reduced
survival to acute cold stress. Heat tolerance, on the other hand,
remained almost unaffected. This result is unsurprising given
cold tolerance is generally more plastic than heat tolerance
(Schou et al. 2017). Although our experimental design did
not allow separating effects of microbiota from effects of mi-
crobiota elimination treatment, dechorionation is assumed to
have limited non-specific effects (Ridley et al. 2013).
Consequently, our observations are likely due to actual micro-
biota disruption.

Mechanisms underlying these stress tolerance divergences
can be very diverse. Loss of ion homeostasis across gut epi-
thelia is directly responsible for chill injuries (Overgaard and
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Fig. 2 Cold tolerance of Co vs. De flies. (A, D) CCR curves of female
Drosophila flies after 12 h exposure to 0 °C (N = 50). (B, E) Survival
curves of femaleDrosophila flies 24 h after being exposed to − 3.5 °C for
increasing durations (N = 180–270). (C, F) Survival curves of female
Drosophila flies 24 h after being exposed to + 38.5 °C for increasing

durations (N = 180–270). Dots indicate raw survival proportions for 20–
30 individuals at a given exposure duration. Lines indicate predicted
survival probabilities based on a binomial GLM. Shaded areas indicate
95% confidence intervals around model predictions. Each row of plots
represents one independent experiment
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MacMillan 2017; MacMillan et al. 2017). Whether gut micro-
biota affects this process has not been tested, but findings sug-
gest that complex interactions among pH, ion transporters, and
bacteria do take place in the midgut (Overend et al. 2016).
Nutrition is another critical determinant of cold tolerance
(Colinet et al. 2013), but it also constitutes a keystone of
microbiota-host relationship (Ridley et al. 2012). Elimination
of microbiota was shown to induce modifications of nutrient
acquisition, with sometimes pathologic consequences on tri-
glycerides and glycogen reserves (Wong et al. 2014). With
these compounds being linked to stress response, cold toler-
ance is likely to be affected in return. Finally, it has been pro-
posed that yeasts, an often-neglected part of Drosophila mi-
crobiota, could be a major driver of microbiota-mediated ther-
motolerance effects (Jiménez Padilla 2016). Dechorionation is
not specific to bacteria and also eliminates yeasts, which could
explain part of the observed phenotypes in our experiments.

To conclude, we showed here a potential novel role of gut
microbiota on thermotolerance. Whether it is under control of
a specific mechanism or merely a side effect of global meta-
bolic changes induced by quantitative reduction of commen-
sal microorganisms still needs to be elucidated.
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